

ABTO Software

WebRTC VoIP SIP SDK Manual

I WORKFLOW

Simple video sample implementation.

1. SDK consists of 2 javascript files - ABTOPhoneUA.min.js and sip.min.js, so include it to

your html page

<!DOCTYPE html>
<html>

 <head>

<script src="<path>sip.min.js" type="text/javascript"></script>
<script src="<path>ABTOPhoneUA.min.js" type="text/javascript"></script>

...

 </head>

 <body>

...

 </body>

</html>

2. In body section create 2 video objects to display incoming and outgoing video streams

and two buttons to start a call and to end the call:

<body>
 <video id="video_remote" autoplay="autoplay" style="width:480px;

height:320px;"></video>
 <video id="video_local" muted autoplay="autoplay" style="width:180px;

height:120px;"></video>

 <input type="button" id="btnCall" value="Call"/>
 <input type="button" id="btnHangup" value="Hang Up"/>
</body>

3. In head section create a script node. All further logic will be implemented there.

<script type="text/javascript">

...

</script>

4. Inside the script node create a function createPhone and set it as onload listener and a

function freePhone and set it as onbeforeunload listener. The former should be responsible for
creating, initializing and registering a phone object, the former one - for unregistering. Also
declare a global variable which will hold the phone object and another variable for current call id.

var ABTOPhone = null;
var callID = -1;

window.onload = createPhone;
window.onbeforeunload = freePhone;

function createPhone(){

}

function freePhone() {

}

5. Inside the createPhone function add the code that initializes the phone and registers a

user.

a. create ABTOPhoneUA instance

ABTOPhone = new ABTOPhoneUA();

b. set listeners for phone’s events you need

ABTOPhone.onConnected = function() { };

ABTOPhone.onDisconnected = function() { };

...

ABTOPhone.onRecordReady = function(id, url) { };

You don’t need to implement all of them but you definitely need onInvited event which fires
when an incoming call arrives.

ABTOPhone.onInvited = function(id, from) {
 if (confirm('Accept call from ' + from)) {
 callID = id;
 ABTOPhone.setRemoteMedia(id, document.getElementById("video_remote"));
 ABTOPhone.accept(id);
 }
 else {
 ABTOPhone.reject(id);
 }
};

This example of onInvited event implementation is not practically useful, as it cannot be
canceled and simultaneous incoming calls cannot be processed. But it is very simple and shows
the usage of accept and reject methods.
ABTOPhone sdk is a multicall system and can handle multiple calls simultaneously, however his
simple sample stores only a single current call id.
In case a call is accepted, callID is used to bind a video object to this call using
setRemoteMedia function. In audio only implementations there may be an audio object instead
of video.

c. add listeners for call and hangup buttons

var btnCall = document.getElementById("btnCall");
btnCall.onclick=function(){
 callID = ABTOPhone.call('101@html5sdk.abtollc.com');
 if (callID >= 0) {
 ABTOPhone.setRemoteMedia(callID, document.getElementById("video_remote"));
 }
};

Function call creates a call, sends INVITE to the other party and returns callID. You use callID
to bind the video control with id video_remote to this call. When callee accepts the invite, his
video will be shown there.

var btnHangUp = document.getElementById("btnHangup");
btnHangUp.onclick=function(){
 ABTOPhone.bye(callID);
};

Function bye ends the call with id callID.

d. get access to hardware

ABTOPhone.startLocalMedia(document.getElementById("video_local"), null, null);

In this example browser will try to get access to both camera and microphone. Camera output
instantly will be played on the video object with id video_local. This method returns promise.

e. set required account fields and register the account

ABTOPhone.setSipDomain('html5sdk.abtollc.com');
ABTOPhone.setWSPort('15063');
ABTOPhone.setSipUserName('100');
ABTOPhone.setSipLogin('100');
ABTOPhone.setSipPassword('100');
ABTOPhone.initAndRegister();

initAndRegister function will first connect to a server and instantly start the registration process.
After successful registration application fires onRegistered event and from now is able to place
and accept calls.

6. Inside freePhone function add the code that unregisters the account and closes

connection

if(ABTOPhone)
 ABTOPhone.close();

This is needed not to leave parasite registrations after application is closed.

II SETTERS AND GETTERS

setters

clearStunServers = function()
removes all STUN servers and disables STUN

addStunServer = function(url)
url – string
adds a server to the list of STUN servers and enables STUN

clearTurnServer = function()
removes active TURN server and disables TURN

setTurnServer = function(url, username, credential)
url – string
username – string
credential – string
sets a TURN server and enables TURN

setRemoteMedia = function(callId,remoteMedia)
callId - integer; remoteMedia - Audio or Video object
associates Audio or Video object with a remote party.

setRecord = function(doRecord)
doRecord - boolean
defines whether to perform remote party’s media (audio and/or video)
default value - false

setSipDomain = function(sipDomain)
sipDomain - string
defines the address of a sip server

setSipProxy = function(sipProxy)
sipProxy - string
defines the address of a proxy server. Optional – if not set, sipDomain is used instead.

setWSPort = function(WSPort)
WSPort - integer or string representing integer
defines websocket port of the sip server

setSecure = function(secure)
secure - boolean
defines whether websocket connection is performed via ws or wss
default value - true (wss)

setSipDisplayName = function(sipDisplayName)
sipDisplayName - string
optional element of sip account. Is used in FROM SIP header.

setSipUserName = function(sipUserName)
sipUserName - string
element of sip account. Is used in FROM SIP header.

setSipLogin = function(sipLogin)
sipLogin - string
element of sip account. Is used to authenticate a user.

setSipPassword = function(sipPassword)
sipPassword - string
element of sip account. Is used to authenticate a user.

setRegisterExpire = function(regExpire)
regExpire - integer or string representing integer
sets registration validity duration. SDK will automatically prolong registration before this timeout.
If not set, the default value is used.

getters

getIsConference = function()
return value - boolean value which shows whether current calls are organized in a single
conference

getToken = function()
return value - sip registration token (string)

getIsRegistered = function()
return value - boolean value which shows whether user is already registered with sip server

getIsLocalMediaStarted = function()
return value - boolean value which shows whether startLocalMedia was successful and local
media stream is running

getActiveCallsCount= function()
return value - number of active calls

III EVENTS

connection and registration events

onConnected = function()
fires when connection to a sip server via websocket is established

onDisconnected = function()
fires when websocket connection is closed

onConnectionError = function(error)
fires when connection to a sip server via websocket was not successful. gives error string as a
parameter

onRegistered = function()
fires when registration with sip credentials is successful

onUnregistered = function()
fires when unregistration is successful

onRegisterError = function(code,status)
fires when registration with sip credentials is not successful. gives error code and status text

onUnregisterError = function(code,status)
fires when unregistration was not successful/ gives error code and status text

onReconnected = function()
fires when registration was reestablished after connection loss

sip messaging event

onMessage = function(from, text)
fires when a registered user gets SIP message MESSAGE. gives the sender address as ‘from’
and message text.

media events

onRemoteMediaStarted = function(callId,stream)
fires when a media stream (stream parameter) of a remote party starts playing. callId parameter
shows which remote party is it. Though this event gives a media stream, a developer should not
bother handling it.

onRemoteMediaStopped = function(callId)
fires when a media stream of a remote party stops playing. callId parameter shows which
remote party is it.

onLocalMediaStarted = function(stream)
fires when a browser has gained access to media resources (audio, video or both). Though this
event gives a media stream, the developer should not bother handling it.

onLocalMediaStartFailed = function(error)
fires when a browser has failed to access media resources. Error is an object returned by
getUserMedia function.

onLocalMediaStopped = function()
fires when the local media stream stops playing.

call events

All events in this group take place within a call. ABTO SDK supports multiple simultaneous calls
so all events have a common parameter callId, which shows to which call belongs this event.

onInvited = function(callId,from)
fires when a call arrives from a remote party. ‘from’ parameter shows the telephone number of
the remote party.

onRinging = function(callId,statusCode)
Can fire in case of outgoing call. This event fires when a SIP message with statusCode < 200
arrives, usually signaling that the call is placed on the remote party but the interlocutor hasn’t
accepted it yet (i.e. callee party is ‘ringing’).

onRingingTransfer = function(callId,to)
fires in the process of call transfer. Shows that the previous call is cleared and placing the call to
the next interlocutor is in process (i.e. a transferee party is ‘ringing’). The developer may use it
to prepare the user interface as in case of an outgoing call. ‘To’ parameter shows transferee
telephone number.

onEstablished = function(callId, from)
is fired when the call is successfully established after a callee accepts the call.

onEstablishError = function(callId,code,status)
fires when an error occurs in the process of establishing the call. Code is error code and status
is reason phrase.

onHangUp = function(callId)
fires in those cases:
when a remote party rejects the call
when caller cancels his outgoing call
when the call ends normally

onCallCleared = function(callId)
fires when the call ends, no matter if the call ends normally, is cancelled or as a result of an
error. In almost all cases onEstablishError and onHangUp are followed by onCallCleared.

onHold = function(callId, holdON, thisSideInitiated)
fires when one of the parties initiates HOLD or releases HOLD. holdON is true when HOLD gets
initiated and is false otherwise (released). thisSideInitiated is true when HOLD is initiated by the
local side, and is false if HOLD is initiated by an interlocutor.

onRecordReady = function(callId, bloburl)
fires when media stream recording is finished and record is ready. The recorded stuff is stored
in memory and bloburl is a link to it. The developer may download it to a file, start playback or
upload it to a storage. Recording shall not start if setRecord was called with a ‘false’ parameter
or if it was not called at all.

IV METHODS

function ABTOPhoneUA(userAgent)
This is the constructor of phone class. userAgent is an optional string parameter which sets a
user agent for this object.

init = function()
Initializes phone object and starts connection to a SIP server via websocket. Connection
parameters - address and port - must be set before this call by setters setSipDomain and
setWSPort respectively. Depending on a result it will fire either onConnected or
onConnectionError.

uninit = function()
closes websocket connection established by init().

register =function()
establishes SIP registration using credentials previously set by setters setSipUserName,
setSipLogin, setSipPassword. Depending on a result it will fire either onRegistered or
onRegisterError.

unRegister =function()
removes current registration. Depending on a result it will fire either onUnregistered or
onUnregisterError.
.
initAndRegister =function()
this function first calls init() and if connection is established successfully it calls register().

reset = function()
resets inner state without reconnection

reconnect = function()
performs reconnection after a random timeout

recover = function(callId)
if a call is in progress, it finishes it and sends invite anew

startLocalMedia = function (localVideo, constraints, _stream)
returns promise that initiates access to microphone and camera. localVideo is an HTML video
object. If it is null audio only access is assumed. The latter logic may be overridden by
constraints. Constraints is an optional parameter that defines what kind of resource to get
access to (microphone, camera or both). Function uses WebRTC getUserMedia to get media
resources with the constraints passed as a parameter. If _stream parameter is not null
startLocalMedia uses this stream instead, so constraints are ignored. Constraints may also be
used to select one of microphones or one of cameras if there are several of them.

stopLocalMedia = function ()
stopps media stream previously accessed in startLocalMedia

call = function(to, addThisCaleeToConference, customHeaders)
initiates a new call with callee “to” by sending an INVITE message. Optionally the INVITE
message may contain custom headers. If addThisCaleeToConference is true the callee will join
a conference. SDK supports a single conference at a time, the number of participants is not
limited. If there is an active conference session, false value of addThisCaleeToConference will
be ignored. Conference participants may invite others, however it is impossible to join a
conference from outside. Conferencing (many-to-many calls) is possible within ABTO WebRTC
SIP SDK only – conference calls with other types of clients will be established as usual calls (as
one-to-many).

hold = function(callId)
initiates call hold. If a call is on hold already, resumes the call

mute = function()
mutes microphone

unmute = function()
unmutes muted microphone

transfer = function(callId, transferTo)
initializes call transfer. In the process of transfer the current call gets disconnected and a new
call to a third party gets placed.

sendDTMF = function(callId, DTMFCode)
sends sip DTMF code within established call

sendMessage =function(messageTo, text)
sends sip MESSAGE to a recipient registered as “messageTo” with content as “text”.

bye = function(callId)
ends a call; amid conference bye on any of active calls triggers bye on all calls

accept = function(callId)
accepts an incoming call

reject = function(callId)
rejects an incoming call

hangupAll = function()
hangs up all ongoing calls

close = function()
this function is opposite to initAndRegister - it hangs up all ongoing calls, removes registration
and closes websocket connection.

